Ecuaciones de Maxwell
- maquinassincronasy
- 9 nov 2015
- 6 Min. de lectura
Las ecuaciones de Maxwell son un conjunto de cuatro ecuaciones que describen por completo los fenómenos electromagnéticos. La gran contribución de James Clerk Maxwell fue reunir en estas ecuaciones largos años de resultados experimentales, debidos a Coulomb, Gauss, Ampere, Faraday y otros, introduciendo los conceptos de campo y corriente de desplazamiento, y unificando los campos eléctricos y magnéticos en un solo concepto: el campo electromagnético.1
Ley de Gauss
Flujo eléctrico de una carga puntual en una superficie cerrada.
La ley de Gauss explica la relación entre el flujo del campo eléctrico y una superficie cerrada. Se define como flujo eléctrico () a la cantidad de fluido eléctrico que atraviesa una superficie dada. Análogo al flujo de la mecánica de fluidos, este fluido eléctrico no transporta materia, pero ayuda a analizar la cantidad de campo eléctrico () que pasa por una superficie S.3 Matemáticamente se expresa como:
La ley dice que el flujo del campo eléctrico a través de una superficie cerrada es igual al cociente entre la carga (q) o la suma de las cargas que hay en el interior de la superficie y la permitividad eléctrica en el vacío (), así:4 5
La forma diferencial de la ley de Gauss, en forma local, afirma que por el teorema de Gauss-Ostrogradsky, ladivergencia del campo eléctrico es proporcional a la densidad de carga eléctrica, es decir,
donde es la densidad de carga en el medio interior a la superficie cerrada. Intuitivamente significa que el campo E diverge o sale desde una carga , lo que se representa gráficamente como vectores que salen de la fuente que las genera en todas direcciones. Por convención si el valor de la expresión es positivo entonces los vectores salen, si es negativo estos entran a la carga.
Para casos generales se debe introducir una cantidad llamada densidad de flujo eléctrico () y nuestra expresión obtiene la forma:
Ley de Gauss para el campo magnético
Las líneas de campo magnético comienzan y terminan en el mismo lugar, por lo que no existe unmonopolo magnético.
Experimentalmente se llegó al resultado de que los campos magnéticos, a diferencia de los eléctricos, no comienzan y terminan en cargas diferentes. Esta ley primordialmente indica que las líneas de los campos magnéticos deben ser cerradas. En otras palabras, se dice que sobre una superficie cerrada, sea cual sea ésta, no seremos capaces de encerrar una fuente o sumidero de campo, esto expresa la inexistencia delmonopolo magnético. Al encerrar un dipolo en una superficie cerrada, no sale ni entra flujo magnético por lo tanto, el campo magnético no diverge, no sale de la superficie. Entonces la divergencia es cero6Matemáticamente esto se expresa así:5
donde es la densidad de flujo magnético, también llamada inducción magnética. Es claro que la divergencia sea cero porque no salen ni entran vectores de campo sino que este hace caminos cerrados. El campo no diverge, es decir la divergencia de B es nula.
Su forma integral equivalente:
Como en la forma integral del campo eléctrico, esta ecuación sólo funciona si la integral está definida en una superficie cerrada.
Ley de Faraday-Lenz
La ley de Faraday nos habla sobre la inducción electromagnética, la que origina una fuerza electromotriz en un campo magnético. Es habitual llamarla ley de Faraday-Lenz en honor a Heinrich Lenz ya que el signo menos proviene de la Ley de Lenz. También se le llama como ley de Faraday-Henry, debido a que Joseph Henry descubrió esta inducción de manera separada a Faraday pero casi simultáneamente.7 Lo primero que se debe introducir es la fuerza electromotriz (), si tenemos un campo magnético variable con el tiempo, una fuerza electromotriz es inducida en cualquier circuito eléctrico; y esta fuerza es igual a menos la derivada temporal del flujo magnético, así:8
,
como el campo magnético es dependiente de la posición tenemos que el flujo magnético es igual a:
.
Además, el que exista fuerza electromotriz indica que existe un campo eléctrico que se representa como:
con lo que finalmente se obtiene la expresión de la ley de Faraday:5
Lo que indica que un campo magnético que depende del tiempo implica la existencia de un campo eléctrico, del que su circulación por un camino arbitrario cerrado es igual a menos la derivada temporal del flujo magnético en cualquier superficie limitada por el camino cerrado.
El signo negativo explica que el sentido de la corriente inducida es tal que su flujo se opone a la causa que lo produce, compensando así la variación de flujo magnético (Ley de Lenz).
La forma diferencial local de esta ecuación es:
Es decir, el rotacional del campo eléctrico es la derivada de la inducción magnética con respecto al tiempo.
Se interpreta como sigue: si existe una variación de campo magnético B entonces este provoca un campo eléctrico E o bien la existencia de un campo magnético no estacionario en el espacio libre provoca circulaciones del vector E a lo largo de líneas cerradas. En presencia de cargas libres, como los electrones, el campo E puede desplazar las cargas y producir una corriente eléctrica. Esta ecuación relaciona los campos eléctrico y magnético, y tiene otras aplicaciones prácticas cómo los motores eléctricos y los generadores eléctricos y explica su funcionamiento. Más precisamente, demuestra que un voltaje puede ser generado variando el flujo magnético que atraviesa una superficie dada.
Ley de Ampère generalizada
Ampère formuló una relación para un campo magnético inmóvil y una corriente eléctrica que no varía en el tiempo. La ley de Ampère nos dice que la circulación en un campo magnético () a lo largo de una curva cerrada C es igual a la densidad de corriente () sobre la superficie encerrada en la curva C, matemáticamente así:5
donde es la permeabilidad magnética en el vacío.
Pero cuando esta relación se la considera con campos que sí varían a través del tiempo llega a cálculos erróneos, como el de violar la conservación de la carga.9Maxwell corrigió esta ecuación para lograr adaptarla a campos no estacionarios y posteriormente pudo ser comprobada experimentalmente por Heinrich Rudolf Hertz.
Maxwell reformuló esta ley así:5
En el caso específico estacionario esta relación corresponde a la ley de Ampère, además confirma que un campo eléctrico que varía con el tiempo produce un campo magnético y además es consecuente con el principio de conservación de la carga.9
En forma diferencial, esta ecuación toma la forma:
En forma sencilla esta ecuación explica que si se tiene un conductor, un alambre recto que tiene una densidad de corriente J, esta provoca la aparición de un campo magnético B rotacional alrededor del alambre y que el rotor de B apunta en el mismo sentido que J.
En medios materiales
Para el caso de que las cargas estén en medios materiales, y asumiendo que éstos son lineales, homogéneos, isótropos y no dispersivos, podemos encontrar una relación entre los vectores intensidad eléctrica e inducción magnética a través de dos parámetros conocidos como permitividad eléctrica y la permeabilidad magnética:10
Pero estos valores también dependen del medio material, por lo que se dice que un medio es lineal cuando la relación entre E/D y B/H es lineal. Si esta relación es lineal, matemáticamente se puede decir que y están representadas por una matriz 3x3. Si un medio es isótropo es porque esta matriz ha podido serdiagonalizada y consecuentemente es equivalente a una función ; si en esta diagonal uno de los elementos es diferente al otro se dice que es un medioanisótropo. Estos elementos también son llamados constantes dieléctricas y, cuando estas constantes no dependen de su posición, el medio es homogéneo.11
Los valores de y en medios lineales no dependen de las intensidades del campo. Por otro lado, la permitividad y la permeabilidad son escalares cuando las cargas están en medios homogéneos e isótropos. Los medios heterogéneos e isótropos dependen de las coordenadas de cada punto por lo que los valores, escalares, van a depender de la posición. Los medios anisótropos son tensores.10 Finalmente, en el vacío tanto como son cero porque suponemos que no hay fuentes.
En la siguiente tabla encontramos las ecuaciones como se las formula en el caso general y en la materia.12
Caso GeneralEn la Materia
Ecuaciones de Maxwell
Las ecuaciones de Maxwell como ahora las conocemos son las cuatro citadas anteriormente y a manera de resumen se pueden encontrar en la siguiente tabla:
NombreForma diferencialForma integral
Ley de Gauss:
Ley de Gauss para el campo magnético:
Ley de Faraday:
Ley de Ampère generalizada:
Estas cuatro ecuaciones junto con la fuerza de Lorentz son las que explican cualquier tipo de fenómeno electromagnético. Una fortaleza de las ecuaciones de Maxwell es que permanecen invariantes en cualquier sistema de unidades, salvo de pequeñas excepciones, y que son compatibles con la relatividad especial ygeneral. Además Maxwell descubrió que la cantidad era simplemente la velocidad de la luz en el vacío, por lo que la luz es una forma de radiación electromagnética. Los valores aceptados actualmente para la velocidad de la luz, la permitividad y la permeabilidad magnética se resumen en la siguiente tabla:
SímboloNombreValor numéricoUnidad de medida SITipo
Velocidad de la luz en el vacíometros por segundodefinido
Permitividad del vacíofaradios por metroderivado
Permeabilidad magnéticahenrios por metrodefinido

Comentários